skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heveran, Chelsea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Material manufacturing accounts for more than 25% of global carbon emissions, primarily due to the manufacture of materials used in construction, vehicles, and machines. Replacement with materials manufactured in a more sustainable manner may greatly reduce energy needs worldwide. One way to reduce the carbon impact of engineering materials is to use living organisms to manufacture and/or maintain or augment material utility – a class of materials known as Engineered Living Materials (ELMs). However, ELMs are a relatively new concept, and several challenges must be overcome before this new class of materials can see broad application. Here, we discuss one of the greatest challenges in designing ELMs that can replace the most carbon intensive engineering materials: the need to achieve sufficient load bearing capacity. 
    more » « less
  3. Microbially induced calcium carbonate precipitation (MICP) has emerged as a novel technology with the potential to produce building materials through lower-temperature processes. The formation of calcium carbonate bridges in MICP allows the biocementation of aggregate particles to produce biobricks. Current approaches require several pulses of microbes and mineralization media to increase the quantity of calcium carbonate minerals and improve the strength of the material, thus leading to a reduction in sustainability. One potential technique to improve the efficiency of strength development involves trapping the bacteria on the aggregate surfaces using silane coupling agents such as positively charged 3-aminopropyl-methyl-diethoxysilane (APMDES). This treatment traps bacteria on sand through electrostatic interactions that attract negatively charged walls of bacteria to positively charged amine groups. The APMDES treatment promoted an abundant and immediate association of bacteria with sand, increasing the spatial density of ureolytic microbes on sand and promoting efficient initial calcium carbonate precipitation. Though microbial viability was compromised by treatment, urea hydrolysis was minimally affected. Strength was gained much more rapidly for the APMDES-treated sand than for the untreated sand. Three injections of bacteria and biomineralization media using APMDES-treated sand led to the same strength gain as seven injections using untreated sand. The higher strength with APMDES treatment was not explained by increased calcium carbonate accrual in the structure and may be influenced by additional factors such as differences in the microstructure of calcium carbonate bridges between sand particles. Overall, incorporating pretreatment methods, such as amine silane coupling agents, opens a new avenue in biomineralization research by producing materials with an improved efficiency and sustainability. 
    more » « less
  4. Insects have developed diverse flight actuation mechanisms, including synchronous and asynchronous musculature. Indirect actuation, used by insects with both synchronous and asynchronous musculature, transforms thorax exoskeletal deformation into wing rotation. Though thorax deformation is often attributed exclusively to muscle tension, the inertial and aerodynamic forces generated by the flapping wings may also contribute. In this study, a tethered flight experiment was used to simultaneously measure thorax deformation and the inertial/aerodynamic forces acting on the thorax generated by the flapping wing. Compared to insects with synchronous musculature, insects with asynchronous muscle deformed their thorax 60% less relative to their thorax diameter and their wings generated 2.8 times greater forces relative to their body weight. In a second experiment, dorsalventral thorax stiffness was measured across species. Accounting for weight and size, the asynchronous thorax was on average 3.8 times stiffer than the synchronous thorax in the dorsalventral direction. Differences in thorax stiffness and forces acting at the wing hinge led us to hypothesize about differing roles of series and parallel elasticity in the thoraxes of insects with synchronous and asynchronous musculature. Specifically, wing hinge elasticity may contribute more to wing motion in insects with asynchronous musculature than in those with synchronous musculature. 
    more » « less
  5. Abstract Western diets are becoming increasingly common around the world. Western diets have high omega 6 (ω-6) and omega 3 (ω-3) fatty acids and are linked to bone loss in humans and animals. Dietary fats are not created equal; therefore, it is vital to understand the effects of specific dietary fats on bone. We aimed to determine how altering the endogenous ratios of ω-6:ω-3 fatty acids impacts bone accrual, strength, and fracture toughness. To accomplish this, we used the Fat-1 transgenic mice, which carry a gene responsible for encoding a ω-3 fatty acid desaturase that converts ω-6 to ω-3 fatty acids. Male and female Fat-1 positive mice (Fat-1) and Fat-1 negative littermates (WT) were given either a high-fat diet (HFD) or low-fat diet (LFD) at 4 wk of age for 16 wk. The Fat-1 transgene reduced fracture toughness in males. Additionally, male BMD, measured from DXA, decreased over the diet duration for HFD mice. In males, neither HFD feeding nor the presence of the Fat-1 transgene impacted cortical geometry, trabecular architecture, or whole-bone flexural properties, as detected by main group effects. In females, Fat-1-LFD mice experienced increases in BMD compared to WT-LFD mice; however, cortical area, distal femur trabecular thickness, and cortical stiffness were reduced in Fat-1 mice compared to pooled WT controls. However, reductions in stiffness were caused by a decrease in bone size and were not driven by changes in material properties. Together, these results demonstrate that the endogenous ω-6:ω-3 fatty acid ratio influences bone material properties in a sex-dependent manner. In addition, Fat-1 mediated fatty acid conversion was not able to mitigate the adverse effects of HFD on bone strength and accrual. 
    more » « less
  6. Abstract Researchers have made headway against challenges of increasing cement infrastructure and low plastic recycling rates by using waste plastic in cementitious materials. Past studies indicate that microbially induced calcium carbonate precipitation (MICP) to coat plastic in calcium carbonate may improve the strength. The objective of this study was to increase the amount of clean and contaminated waste plastic that can be added to mortar and to assess whether MICP treatment enhances the strength. The performance of plastic-filled mortar was investigated at 5%, 10%, and 20% volume replacement for cement. Untreated, clean plastics at a 20% cement replacement produced compressive strengths acceptable for several applications. However, a coating of MICP on clean waste plastic did not improve the strengths. At 10% replacement, both MICP treatment and washing of contaminated plastics recovered compressive strengths by approximately 28%, relative to mortar containing oil-coated plastics. By incorporating greater volumes of waste plastics into mortar, the sustainability of cementitious composites has the potential of being improved by the dual mechanisms of reduced cement production and repurposing plastic waste. 
    more » « less